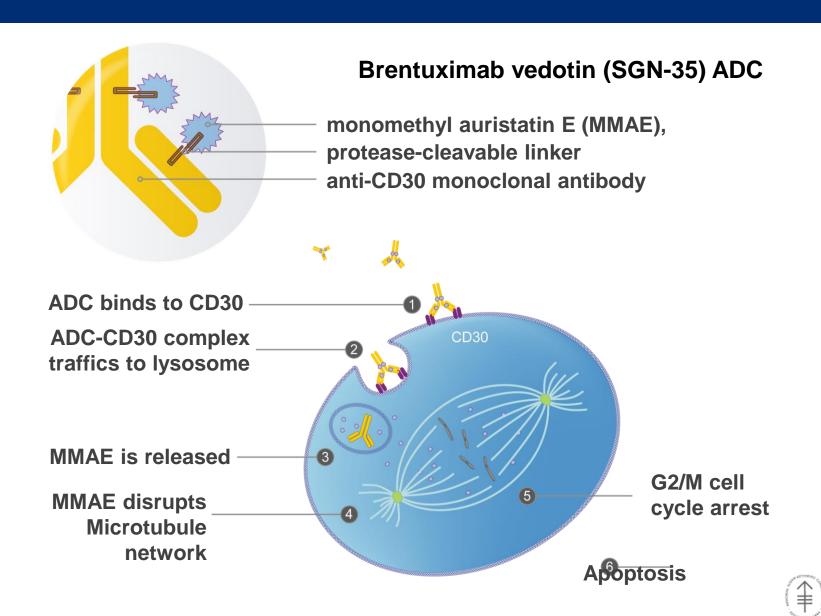
Relapsed and Refractory HL Will we be able to avoid transplant: Living in the past-Jethro Tull

Craig Moskowitz, MD
Stephen A. Greenberg Chair in Lymphoma Research
Member, Memorial Sloan-Kettering Cancer Center
Professor of Medicine, Weill Medical College of Cornell University

FDG-PET assessment in HL

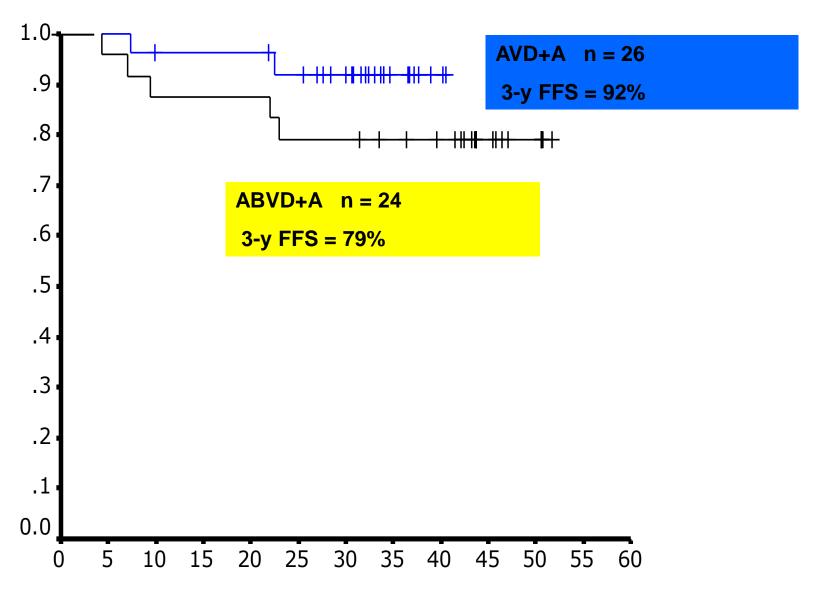
Deauville criteria or 5 point scale


Score	FDG-PET/CT scan result
1	No uptake above background
2	Uptake ≤ mediastinum
3	Uptake > mediastinum but ≤ liver
4	Uptake moderately more than liver uptake, at any site
5	Uptake markedly more than liver uptake (>2 times SUVmax of liver) at any site or new sites of disease

New data with Brentuximab Vedotin

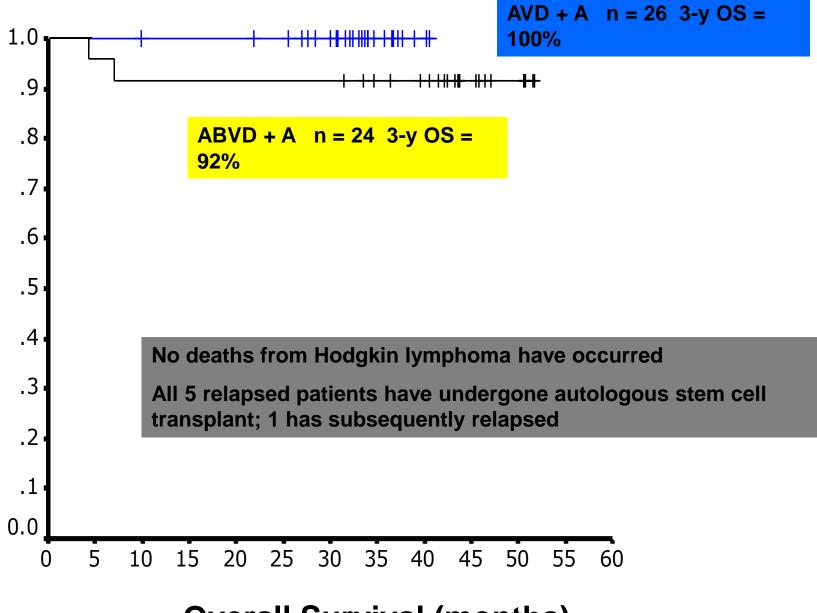
Brentuximab Vedotin Mechanism of Action

Memorial Sloan-Kettering Cancer Center

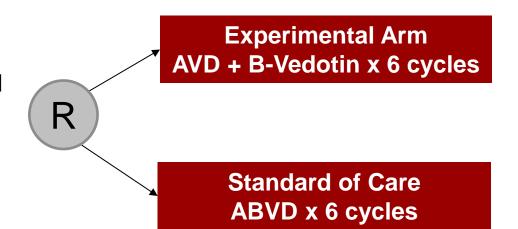

Five recent clinical trials

- Update on ASHL with BV-AVD
- BV administered as a single agent for salvage treatment for HL
- BV administered post ASCT for consolidation after and ASCT
- BV administered sequentially with ICE as salvage treatment for HL
- BV administered concomitantly with bendamustine for salvage treatment for HL

ASHL


Will BV-AVD win?

Failure-free Survival (months)



Phase III Frontline HL (ECHELON-1)

Design

Newly Diagnosed Advanced
Stage cHL Patients

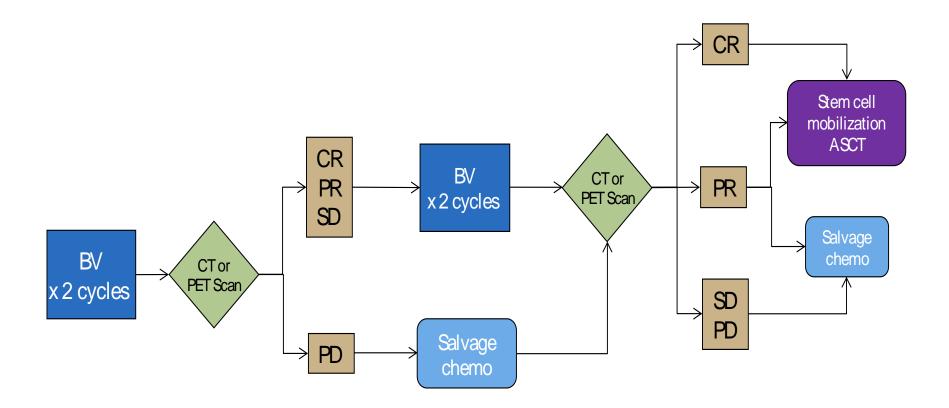
>18 y

- Target n = 1040
- Primary outcome measure: Modified progression free survival (mPFS)

Slide adapted from Takeda/Seattle Genetics

My Critique

- Follow-up is short
- Stage IIB patients were included
- BV should never be combined with Bleomycin and likely Gemcitabine; Studies will be initiated to see if BV can be safely combined with checkpoint inhibitors
- BV-AVD should be administered with growth factors, I prefer G-CSF days 6-9
- The design of the Echelon study leads one to believe that all patients will benefit from BV it the study is positive, one could argue that patients could receive 2 cycles of BV-AVD and if the interim PET is negative, de-escalate to AVD



COH phase II trial of BV as first salvage therapy in relapsed/refractory HL prior to ASCT

Robert Chen¹, Joycelynne Palmer², Peter Martin⁵, Ni-Chun Tsai², Young Kim³, Sandra Thomas¹, Michelle Mott¹, Firoozeh Sahebi^{1,4}, Tanya Siddiqi¹, Saro Armenian¹, Yuan Shan¹, Leslie Popplewell¹, Stephen Forman¹

Study Schema

Response Rate

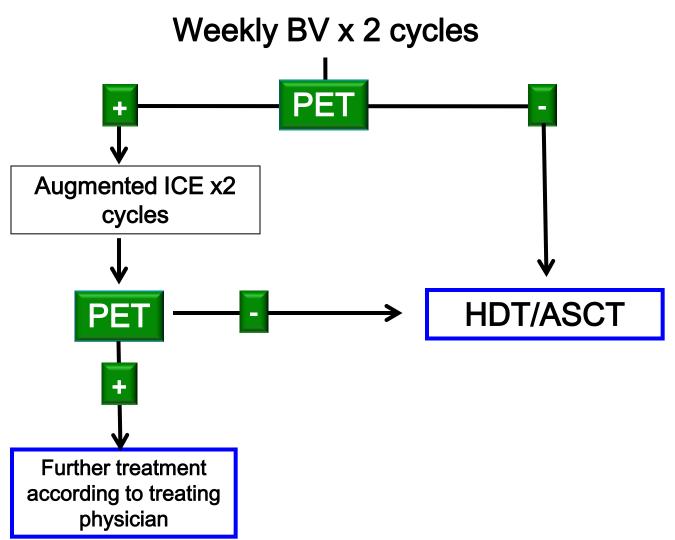
	Best response	Best response at cycle 2	Response at cycle 4 or EOT
ORR	25/36 (69%)	24/36 (67%)	22/36 (61%)
CR	13/36 (36%)	13/36 (36%)	13/36 (36%)
PR	12/36 (33%)	11/36 (31%)	9/36 (25%)
SD	10/36 (28%)	11/36 (31%)	10/36 (27%)
PD	1/36 (3%)	1/36 (3%)	4/36 (11%)

Univariate analysis: no differences in terms of age, sex, disease stage, response to induction, bulky disease, or B symptoms.

ASCT

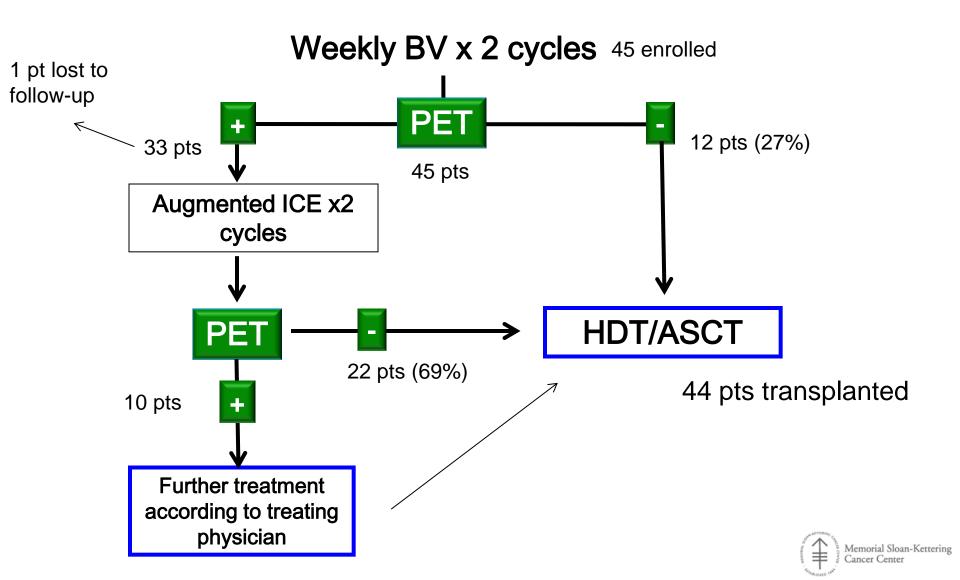
- 33/37 successfully proceeded to ASCT (89%): 1 went to allo-HCT, 3 could not be salvaged
- 17/33 (52%) received BV only
- 16/37 (48%) received additional salvage chemotherapy (ICE/DICE/IGEV/GVD)
- 13 CR and 4/12 PR went to ASCT directly
- 24/33 (73%) were in CR at time of ASCT

My Critique


- The CR rate is most important endpoint for salvage tx in H; 36% with BV; luckily it nearly always happens at the first restaging, hence no "bridge burning"
- Study is not an intent to treat design and the chemotherapy-based salvage regimen was not fixed for type, dose, or number of cycles

MSKCC 11-142: Relapsed/refractory HL

First TX following upfront therapy


Lancet Oncology 16, No 3, 284-292, March 2015

MSKCC 11-142

45 evaluable patients

Deauville response to salvage therapy

BV (n=45)

Deauville score	n
1	4
2	8
3	8
4	21
5	4

AugICE (n=32)

Deauville score	n
1	8
2	14
3	2
4	8
5	

Adverse events due to BV in at least 10% of patients

Neuropathy: 58%

grade 1: 17 (43%)

grade 2: 6 (15%)

Rash: 73%

grade 1: 22 (55%)

grade 2: 6 (15%)

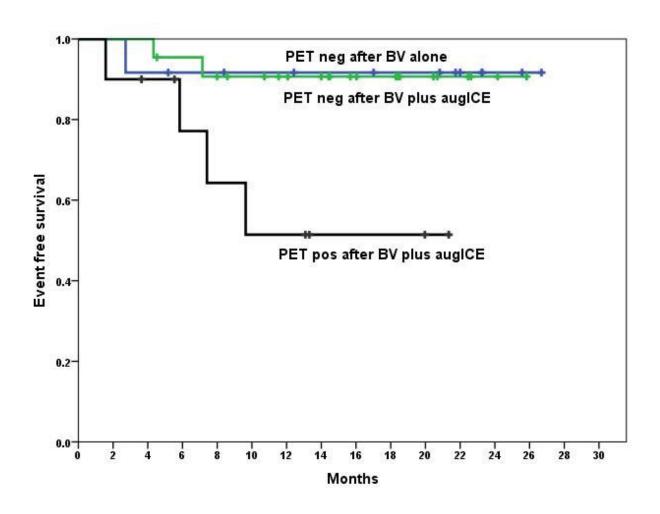
grade 3: 1 (3%)

Systemic steroids administered: 10 (25%)

Post-salvage outcome

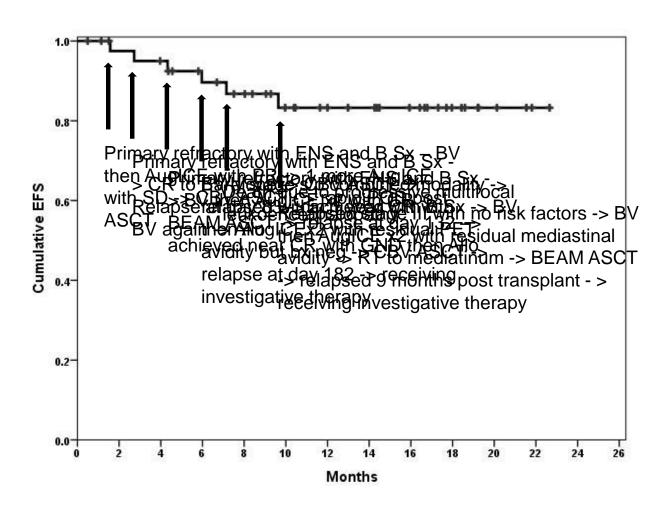
- 80% CR (Deauville 2) following BV +/- AugICE
- 10 patients did not achieve CR
 - 3 proceeded directly to ASCT (2 deauville 3, 1 deauville 4)
 - 6 received involved field RT followed by ASCT
 - 1 (not eligible for RT) received 3rd AugICE (SD) then ASCT

Stem cell collection


- BV alone:
 - Median 6.3 x 10⁶/kg (range 2.96-13.29 x10⁶/kg)
- BV-> AugICE
 - Median 9.4 x 10⁶/kg (range 5.15-31.43 x10⁶/kg)

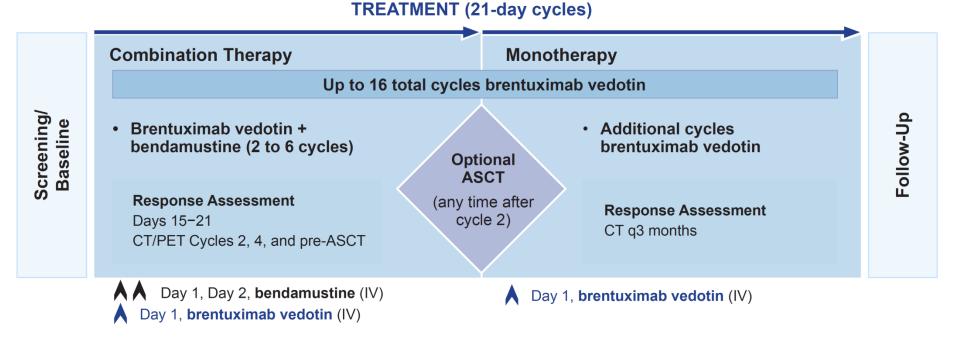
Conditioning

- Chemo (BEAM, CBV): 36
- TLI/cytoxan/etoposide: 7
- Pre-transplant IFRT: 17



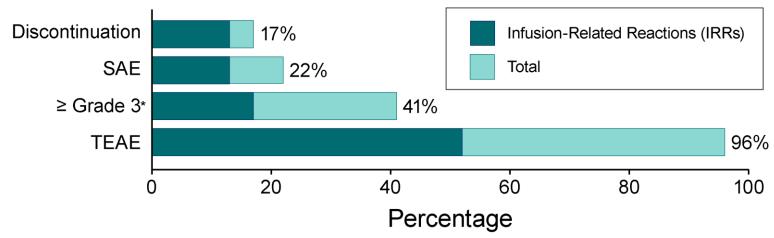
EFS according to treatment and PET status

EFS for transplanted patients


Brentuximab Vedotin in Combination with Bendamustine for Patients with Rel/Ref HL

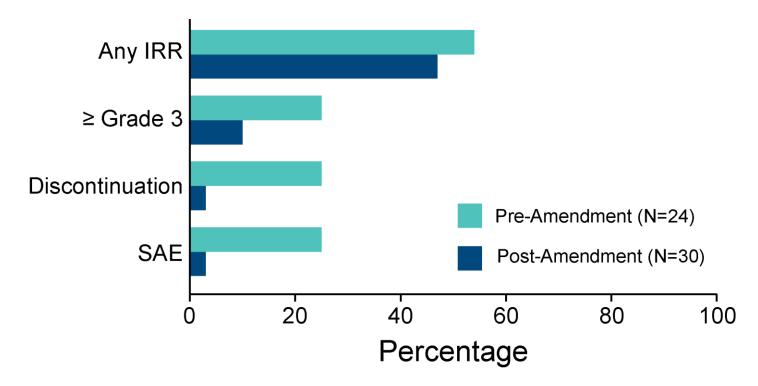
Ann LaCasce¹, R. Gregory Bociek², Jeffrey Matous³, Ahmed Sawas⁴, Paolo Caimi⁵, Stephen Ansell⁶, Miguel Islas-Ohlmayer⁷, Eric Cheung⁸, Edward Agura⁹, Caroline Behler¹⁰, Howland Crosswell¹¹, Julie Vose², Neil Josephson¹², Ranjana Advani¹³

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²University of Nebraska Medical Center, Omaha, NE, USA; ³Colorado Blood Cancer Institute, Denver, CO, USA; ⁴Columbia University Medical Center, New York, NY, USA; ⁵University Hospitals Case Medical Center, Cleveland, OH, USA; ⁶Mayo Clinic, Rochester, MN, USA; ⁷The Jewish Hospital-Mercy Health, Cincinnati, OH, USA; ⁸The Oncology Institute of Hope & Innovation, Whittier, CA, USA; ⁹Charles A. Sammons Cancer Center, Dallas, TX, USA; ¹⁰Pacific Hematology Oncology Associates, San Francisco, CA, USA; ¹¹St. Francis Hospital, Greenville, SC, USA; ¹²Seattle Genetics, Inc., Bothell, WA, USA; ¹³Stanford Cancer Center, Stanford, CA, USA


Study Design

Main eligibility: ≥18 years old, Classical HL, R/R disease after frontline chemotherapy, ECOG performance status 0–2

Adverse Events on Combination Therapy


^{*} Grade 3 IRR per NCI CTCAE 4.03: Prolonged (e.g., not rapidly responsive to symptomatic medication and/or brief interruption of infusion); recurrence of symptoms following initial improvement; hospitalization indicated for clinical sequelae

- Main toxicities observed on combination treatment were IRRs
 - Dyspnea (15%), chills (13%) and flushing (13%) were most common symptoms;
 hypotension requiring vasopressor support also occurred
 - Majority of reactions occurred within 24 hrs of Cycle 2 infusion and were considered related to both agents
- Delayed hypersensitivity reactions also occurred, the most common of which was rash (14 patients up to 22 days after infusion)

IRR Premedication

- Protocol was amended to require premedication with corticosteroids and antihistamines
- Premedication decreased severity of IRRs

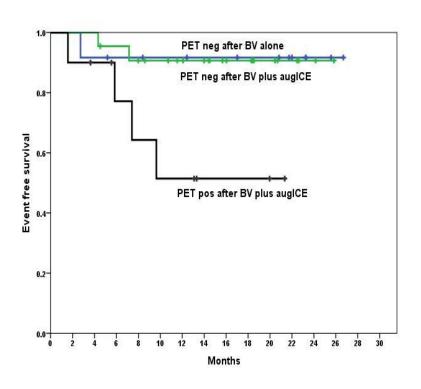
Best Response on Combination Therapy

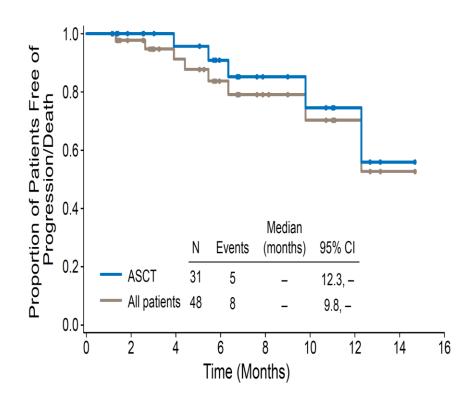
	N=	48
	n (%)	95% CI
Best clinical response*		
Complete remission (CR)	40 (83)	69.8. 92.5
Partial remission (PR)	6 (13)	
Stable disease (SD)	1 (2)	
Progressive disease (PD)	1 (2)	
Objective response rate (ORR [CR + PR])	46 (96)	85.8, 99.5

^{*}Prior to ASCT

Majority of CRs (34/40) achieved at Cycle 2 restage

Stem Cell Mobilization and Collection


	N=33
Median number of apheresis sessions, (range)	2 (1–5)
Median CD34+ cell yield (cells/kg), (range)	4.0 x 10 ⁶ (1.7–11.8)
>2 x 10 ⁶ Cells Collected, n	32*


^{*}Patient with 1.7 x10⁶ cells collected was able to undergo transplant with engraftment

- First-line mobilization (G-CSF alone or combined with plerixafor) successful in all but 1 patient*
- Approximately half of patients who underwent mobilization (17/33) did so after 2 treatment cycles
- Median time to platelet and neutrophil engraftment <2 weeks

^{*} Patient underwent bone marrow harvest due to failure of G-CSF (rescue plerixafor not used)

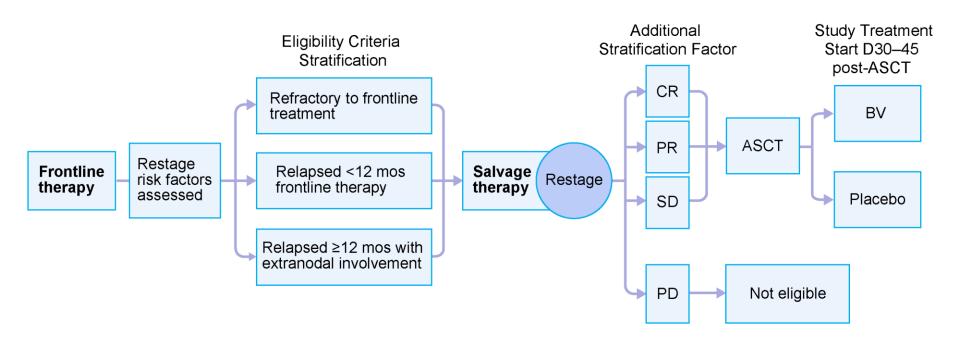
EFS: MSKCC 11-142 vs. Benda-BV

My Critque

 I am concerned that there is a number of relapses early post-ASCT in pts that were in CR pre-ASCT this has not been seen in other cohorts

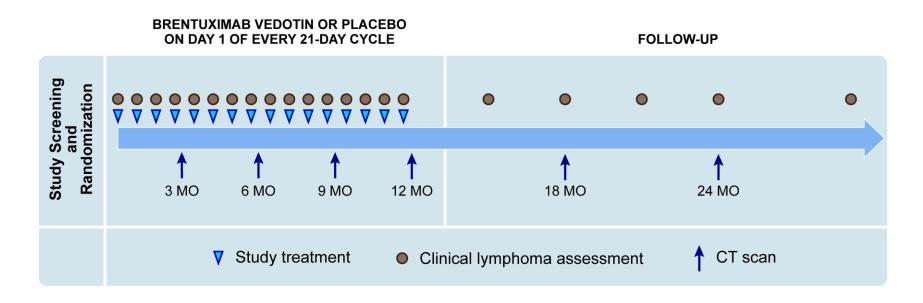
PBPC mobilization as expected is not robust

The AETHERA Trial: Results of a Randomized, Double-Blind, Placebo-Controlled Phase 3 Study of Brentuximab Vedotin in the Treatment of Patients at Risk of Progression Following Autologous Stem Cell Transplant for HL


CH Moskowitz, A Nademanee, T Masszi, E Agura, J Holowiecki, MH Abidi, Al Chen, P Stiff, AM Gianni, A Carella, D Osmanov, V Bachanova, J Sweetenham, A Sureda, D Huebner, EK Larsen, NN Hunder, and J Walewski

In press: The Lancet, March 19, 2015

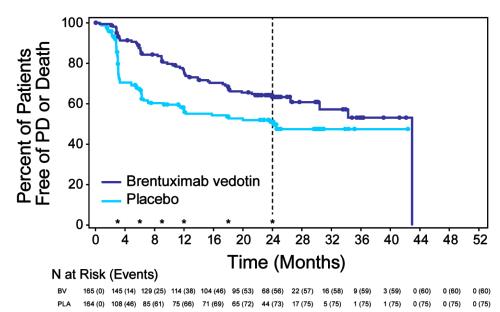
Study Design and Key Eligibility Criteria

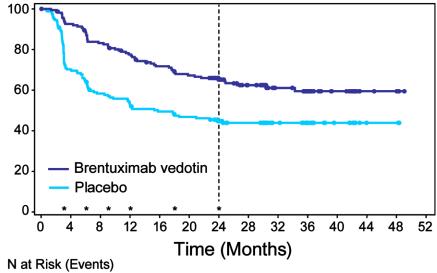

 329 patients were randomized at 78 sites in North America and Europe

Treatment and Assessment Schedule

- Patients were randomized to receive 16 cycles of BV or placebo
- They were evaluated and treated every 21 days
- Imaging quarterly for first year, then at 18 and 24 months
- Importantly, patients who progressed on the placebo arm could subsequently receive BV on another trial

Main Objectives


Primary


 To compare progression-free survival (PFS) per independent review facility (IRF) between the 2 treatment arms

Secondary

- To compare overall survival (OS) between the 2 treatment arms
- To evaluate the safety and tolerability of BV compared to placebo

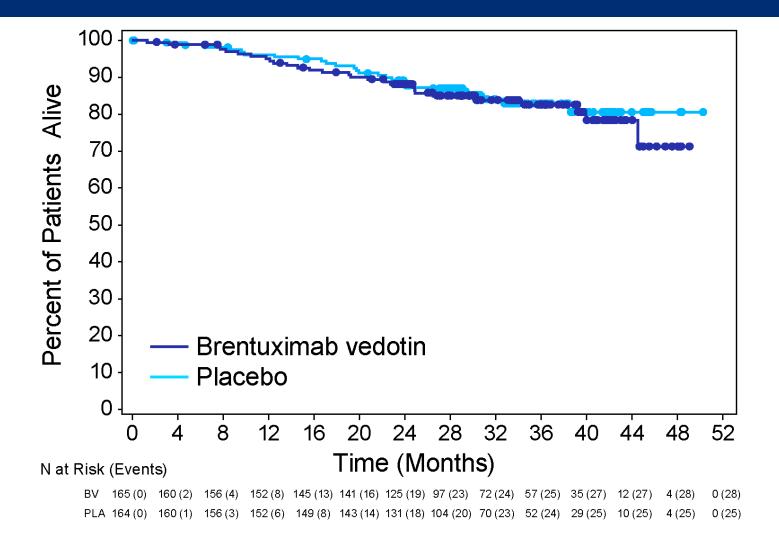
Progression-Free Survival

	BV	Placebo
	(N=165)	(N=164)
Hazard Ratio (95% CI)	0.57 (0.40–0	0.81, P=0.001)
Events	60	75
Median PFS (months)	43	24
2-year PFS rate	63%	51%

	BV (N=165)	Placebo (N=164)
Hazard Ratio (95% CI)	0.50 (0.3	36–0.70)
Events	60	89
Median PFS (months)		16
2-year PFS rate	65%	45%

165 (0) 149 (12) 133 (27) 122 (36) 111 (45) 103 (52) 90 (55) 62 (58)

Censoring Rules


Analysis	CT Scans (per IRF)	CT Scans (per INV)	Biopsy Reports	Lymphoma Assessments	Death
IRF	X		X		X
Investigator		X	X	X	X

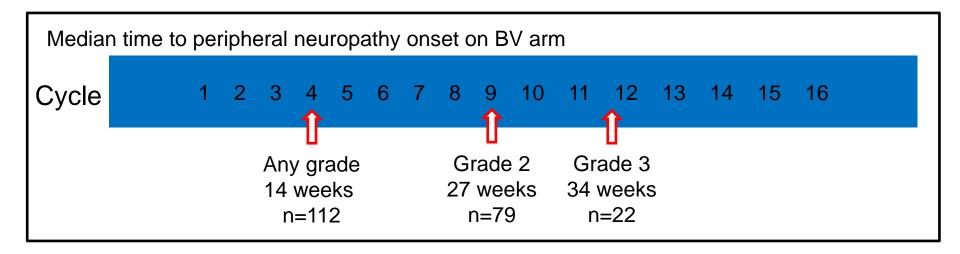
Number	∩f	Patients	at	Risk	after	24	Months
INGHIDGI	OI.	i aucito	αı	1 (131)	aitti	47	1710111113

	28 Months	32 Months	36 Months	40 Months	44 Months
PFS per IRF	39	21	10	4	0
PFS per investigator	107	68	56	29	7

Overall Survival

PFS and OS by Number of Risk Factors

No. Risk Factors	N	PFS per IRF HR (95% CI)	PFS per Investigator HR (95% CI)	OS HR (95% CI)
≥1	329	0.57 (0.40–0.81)	0.50 (0.36, 0.70)	1.15 (0.67–1.97)
≥2*	280	0.49 (0.34–0.71)	0.40 (0.28, 0.57)	0.94 (0.53–1.67)
≥3*	166	0.43 (0.27–0.68)	0.38 (0.25, 0.58)	0.92 (0.45–1.88)


Risk Factors

- Relapsed <12 months or refractory to frontline therapy
- Best response of PR or SD to most recent salvage therapy
- Extranodal disease at pre-ASCT relapse
- B symptoms at pre-ASCT relapse
- Two or more prior salvage therapies

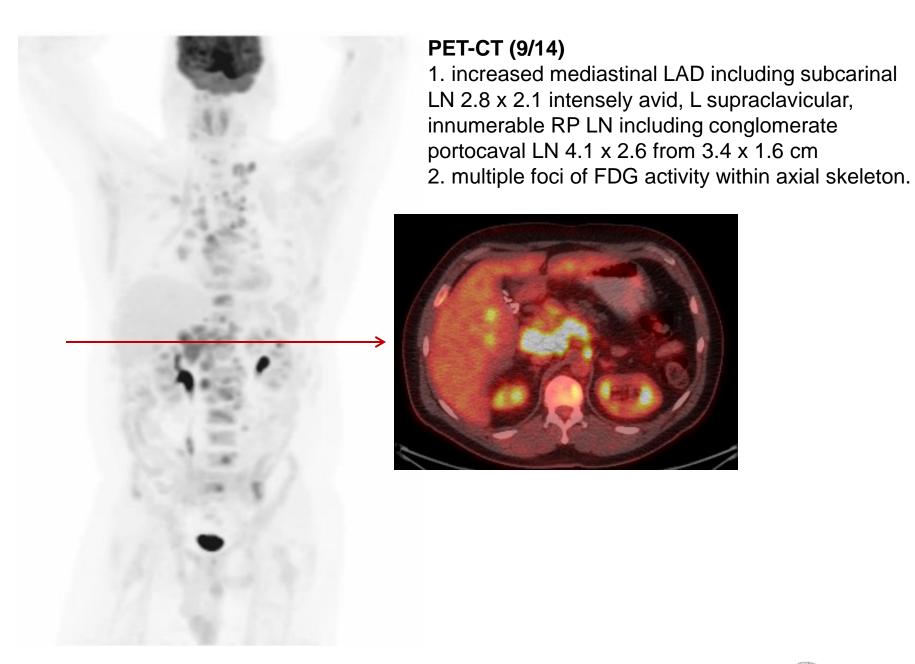
Peripheral Neuropathy*

	BV (N=167) n (%)	Placebo (N=160) n (%)
Any treatment-emergent peripheral neuropathy	112 (67)	31 (19)
Grade 3	22 (13)	2 (1)
Grade 4	0	0

Conclusions

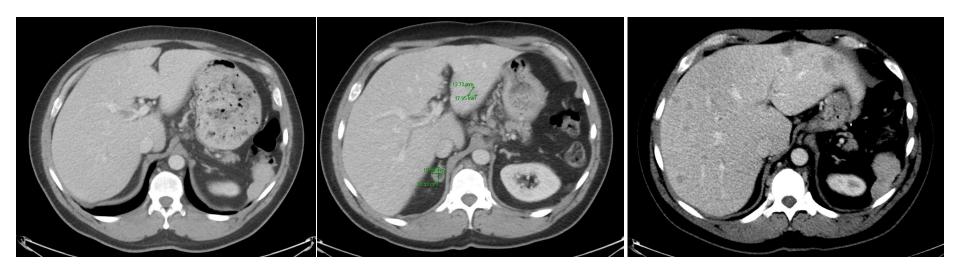
- Early consolidation post-ASCT with BV demonstrated improved PFS per IRF in HL patients with risk factors for relapse or progression (HR=0.57, P=0.001)
 - PFS benefit was sustained, with 2-year PFS rates per investigator of 65% and 45% on the BV and placebo arms, respectively
 - Consistent benefit was observed across subgroups
- Interim analysis of overall survival did not show a significant difference between treatment arms (P=0.62)
 - Analysis limited by small number of events and the large number of patients on the placebo arm crossing over to BV after progression
 - More patients on the placebo arm received subsequent anti-tumor therapy and/or allogeneic stem cell transplant
- Consolidation therapy was generally well tolerated
 - Peripheral sensory neuropathy and neutropenia were common, and were manageable with dose reductions or delays
 - Two deaths occurred within 40 days of dosing with BV
- BV consolidation therapy is an important therapeutic option for HL patients undergoing ASCT to reduce the risk of relapse or progression

Interesting Case


Segue to checkpoint inhibition in HL

Patient: AH, Primary Ref HL

- ABVD, DHAP, BV-PR
- 8/2013: BEAM → auto-SCT with plan for post-SCT axillary XRT
- 11/2013: PET-CT with worsening R axillary LAD
- 11-12/2013: XRT 4400 cGy to R axilla
- 2/14, 6/14, 9/14: slowly progressive PET-avid LAD in mediastinal, hilar, RP LN and bone disease in 9/2014
 - Mediastinal surgical biopsy 9/22/14: relapsed dz



Patient: AH, continued

- Off protocol salvage options: MOPP, GVD, Bendamustine
- Enrolled in 12-142: Ipilimumab + Nivolumab
 - 11/13/14: Ipi/Nivo C1 (c/b leukocytosis, fevers)
 - 12/3/14: Ipi/Nivo C2
 - 12/24/14: Ipi/Nivo C3
 - 1/2014: Ipi/Nivo C4

- 12/2014 CT: mixed response with new hypointense liver lesions but stable by immune response criteria: continued nivolumab alone q2w x2c
- 02/2015: increase and development of multiple new liver lesions
 - Given dramatic clinical improvement (resolution of B symptoms), arranged for liver biopsy
- 2/20/15: Liver, right lobe biopsy: benign liver parenchyma with mild, predominantly portal chronic inflammation. No evidence of lymphoma seen. Note: Additional deeper levels were obtained. Performed immunohistochemical stains reveal that the majority of inflammatory cells are CD3 positive T cells.

Memorial Sloan-Kettering Cancer Center

Lymphoma* and Lymphoma Transplant** Services-MSKCC

- John Gerecitano*
- Paul Hamlin*
- Steve Horwitz*
- Anita Kumar*
- Matthew Matasar*/**
- Alison Moskowitz*
- Craig Moskowitz*/**
- Ariela Noy*
- Lia Palomba*
- Miguel Perales**
- Carol Portlock*
- Craig Sauter**
- David Straus*
- Joachim Yahalom*/**
- Anas Younes*
- Andrew Zelenetz*

